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Abstract

Superconducting Quantum Interference Devices
(SQUIDs) are highly sensitive magnetometers that
leverage the quantum properties of Josephson junc-
tions to measure small changes in magnetic fields. By
analyzing Cooper pair tunneling and quantum inter-
ference in Josephson junctions under an applied mag-
netic field, we derive the key equations of SQUIDs.
We then show that a typical SQUID can achieve
a magnetic field sensitivity on the order of 10 pi-
cotesla.

1 Introduction

SQUIDs exploit principles of superconductivity and
quantum mechanics to achieve remarkable precision
in measurement of magnetic fields. Since first devel-
oped in the 1960s, SQUIDs have progressed to mea-
sure fields as small as a few femtoteslas. In this pa-
per, we derive and use the properties of a Josephson
Junction to construct a simple SQUID and show its
theoretical sensitivity to be about 10 picotesla. No-
tably, we will constrain the discussion to the mathe-
matically simpler, low-temperature superconductors.

2 Background

2.1 Wavefunction of Superconductors

In Ginzburg-Landau theory of superconductivity, the
switch from normally conducting to superconducting
is a second order phase transition [1]. Such a transi-
tion can be represented by a free energy functional.
This is an expression of the free energy as a function

(primarily) of temperature which is Taylor expanded
in a complex order parameter around the critical tem-
perature. The order parameter is taken to be a com-
plex wavefunction Ψ describing the density of Cooper
pairs:

|Ψ|2 = n (1)

Where n is the density of Cooper pairs. In this for-
mulation the formation of Cooper pairs is due to the
minimization of the free energy functional. The for-
mation process happens gradually as T crosses Tc,
the critical temperature of superconductivity. There-
fore, near Tc, the density of Cooper pairs gradually
increases to 1 as the material undergoes the phase
transition. We can also express the order parameter
as a magnitude and phase:

|Ψ|e−iϕ =
√
n

|Ψ| =
√
n · eiϕ

(2)

Where ϕ is the phase of the wavefunction Ψ.

2.2 Gauge Invariance

In quantum mechanics, the Hamiltonian for a particle
in an electromagnetic field can be expressed in terms
of the vector and scalar potential. This allows us to
write the Schrodinger Equation for such a particle
(mass m and charge q) as:

ih̄
∂Ψ(r, t)

∂t
=

[
1

2m
(−i∇− qA(r, t))

2
+ qV (r, t)

]
Ψ(r, t)

(3)
where A and V are the vector and scalar potentials,
respectively. Imposing gauge invariance [4],

A′ = A+∇λ

V ′ = V − 1

c

∂λ

∂t

(4)
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Figure 1: Josephson Junction Diagram

and applying it to the above SE:

ih̄
∂Ψ′(r, t)

∂t
=

[
1

2m
(−ih̄∇− qA′(r, t))

2
+ qV ′(r, t)

]
Ψ′(r, t)

(5)
These are simultaneously satisfied when the wave-
function acquires a phase shift [2]: Ψ′ = Ψeiqλ/c,
noting Ψ′ = |Ψ′|eiϕ′

, we solve for the phase shift as-
sociated with gauge invariance:

ϕ′ = ϕ+ i
qλ

c
(6)

Additionally, from [6], using equations 3 and 5, we
can find:

∇ϕ′ = ∇ϕ− q

c
A (7)

3 Derivations

3.1 1D Josephson Junctions

Figure 1 depicts a schematic of a Josephson junction
which is two superconductors separated by a small
gap filled with a non-superconducting meteral. As
mentioned earlier, the wavefunction of superconduc-
tors can be written as Ψi =

√
nie

iϕi . For the Joseph-
son junction seen in figure 1 each superconductor can
be assigned a wavefunction Ψ1 and Ψ2. The insulat-
ing gap is small, so the two wavefunctions remain
weakly coupled with the coupling constant K. We
begin with the Schrodinger Equation with a coupling
constant [1]:

i
∂Ψ1(r)

∂t
= E1Ψ1 −KΨ2

Taking the complex conjugate:

[−i
∂Ψ∗

1

∂t
= EΨ∗

1 −KΨ∗
2]

The Cooper pair density n1 is defined as Ψ∗
1Ψ1. Tak-

ing the time derivative of this leads to the following:

dn1

dt
= Ψ∗

1

dΨ1

dt
+

dΨ∗
1

dt
Ψ1

= Ψ∗
1

1

i
(EΨ1 −KΨ2)− (

1

i
)(EΨ∗

1 −KΨ∗
2)Ψ1

=
K

i
(−Ψ∗

2Ψ1 +Ψ∗
1Ψ2)

(8)
However, a time-changing Cooper pair density con-

stitutes an electric current. Furthermore, we assume
that the two densities are the same; n1 = n2 = n,
leading to:

dn1

dt
= I =

K

i
n sin(ϕ2 − ϕ1) = −dn2

dt
(9)

We can see from equation 9 that it is possible to
sustain a current with no change in voltage. In other
words, we have superfluid current across the Joseph-
son Junction.

To continue finding the current of the Joseph-
son Junction, we must consider the gauge invariance
property discussed in section 2.2. Integrating over
space, we get:ˆ x2

x1

(∇xϕ
′) dx =

ˆ x2

x1

(
∇xϕ− 2e

c
Ax

)
dx

= ϕ2 − ϕ1 −
ˆ x2

x1

2e

c
Ax dx

(10)

Therefore, equation 9 should also include a term
with the vector potential, A, to ensure gauge invari-
ance.

I = Ic sin(ϕ2 − ϕ1 +
2e

c

ˆ x2

x1

Axdx) (11)

Simplifying further by choosing the temporal gauge
[3] where the scalar potential is 0, leading to:

E = −∇V − ∂A

∂t
= −∂A

∂t
(12)

ˆ x2

x1

Axdx = −
ˆ x2

x1

Extdx = tV12 (13)
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Where t is the time and V12 is the voltage applied
across the junction. Substituting into equation 11 we
get the main Josephson Junction equations.

I = sin(ϕ2 − ϕ1 +
2e

c
tV12) (14)

From this equation, we can see that the Josephson
Junction causes a constant voltage to give rise to an
alternating output current. This is called the AC
Josephson effect.

3.2 3D Josephson Junctions with ap-
plied magnetic field

To introduce a magnetic field, we must look at
Josephson Junctions in 3D space. The Josephson
Junction can be seen in figure 1 with a magnetic field
going in the z direction. The magnetic field can be
written as H = ∇ × A. Since we know that H is
along the z-axis: Hz =

∂Ay

∂x − ∂Ax

∂y . From the the
geometry of the setup, we only care about Ax and so
Hz = ∂Ax

∂y which makes Ax = Hzy. Taking another

integral in x:
´
Axdx = Hzyd.

Now, substituting equation 11:

j(y) = jc sin

(
ϕ2 − ϕ1 −

2e

c

ˆ
Ax dx

)
x̂

= jc sin

(
ϕ2 − ϕ1 −

2e

c
Hzyd

)
x̂

(15)

We can then find the current density by integrat-
ing over the transverse directions to find the cross
section:

J =
1

LW

ˆ L

0

dy

ˆ W

0

dz[jc sin(ϕ2 − ϕ1 −
2e

c
Hzyd)]

(16)

J =
jcc

2eHzdL
[cos(ϕ2 − ϕ1)− cos(ϕ2 − ϕ1 −

2e

c
HzdL)]

(17)

Note use of the trig identity cos(α) − cos(β) =
−2 sin(α−β

2 ) sin(α+β
2 ) and the definition of the flux

quanta Φ0 = ch
2e = c

4πe . We also define the magnetic

Figure 2: SQUID Diagram

flux of the junction which is Φ =
¸

dA(Hz) = HzLd.
This allows us to simplify the above equation:

J = jc
Φ0

nΦ
[sin(ϕ2 − ϕ1 −

nΦ

Φ0
) sin(

nΦ

Φ0
)] (18)

Since the first sin function oscillates between -1 and
1, we can determine the maximum current to be the
value of the prefactor:

Jmax = jc

∣∣∣∣Φ0

nΦ
sin(

nΦ

Φ0
)

∣∣∣∣ (19)

As seen above, maximum current Jmax varies with
the applied magnetic flux Φ. The net current arises
from the sum of contributions from different parts of
the junction which can interfere, constructively or de-
structively, depending on the phase difference caused
by the magnetic field. At certain values of Φ, there
is perfect destructive interference, resulting in no net
current.

3.3 SQUIDS

Now consider the SQUID device as depicted in 2.
The device is formed by connecting two Josephson
Junctions in parallel. As detailed in the figure, we
must account for the phase of the wavefunction at
four locations; either side of both junctions. For con-
venience, let θ1 and θ2 be the jump in phase across
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each junction. We can use equation 14 to find the
total output current as the sum of the two inputs:

I = Ic1sin(θ1) + Ic2sin(θ2)

The bulk of the superconductor has a superfluid cur-
rent (v̄s) of 0, so [5]:

0 = v̄s = ∇θi −
2e

c
A =⇒ ∇θi =

2e

c
A (20)

We integrate this current over the dashed contour,
which is a closed loop integral, so the phase must be
some multiple of 2π over the whole integral.

2πm =

ˆ 2

1

∇θdl +

ˆ 3

2

∇θdl +

ˆ 4

3

∇θdl +

ˆ 1

4

∇θdl

where m is an integer.
We recognize that the integrals from 1 → 2 and

3 → 4 become θ1 and −θ2, respectively. The remain-
ing integrals from 2 → 3 and 4 → 1 are essentially
the whole loop assuming the junctions are small com-
pared to the size of the loop. This is a reasonable as-
sumption since the junctions made of insulating ma-
terials are typically on the Angstrom scale. There-
fore, the integrand ∇θ can be changed to 2e

c A via
equation 20 over the whole contour; this is just the
flux passing through the interior of the SQUID.

2πm = θ1 − θ2 +
2e

c
Φ

Recalling Φ0 = ch
2e ,

θ1 − θ2 = 2πm− 2π
Φ

Φ0

We can change into generalized coordinate system θ:

θ1 = θ − πΦ

Φ0
+ 2πm (21)

θ2 = θ +
πΦ

Φ0
(22)

The current splits as it enters the SQUID, meaning
that both sides current should be equal.

Ic1 = Ic2 =
I

2
≡ Ic

Figure 3: SQUID Max Current

Returning to the AC Josephson Junction expression,
equation 14:

I = Ic[sin(θ−
πΦ

Φ0
)+sin(θ+

πΦ

Φ0
)] = 2Ic sin θ cos(

πΦ

Φ0
)

Extracting the prefactor when the sinθ term takes its
maximum value of 1, we find the maximum current
to be:

Imax(Φ) = 2Ic| cos(
πΦ

Φ0
)| (23)

This can be further seen in figure 3.
The critical current vanishes at Φ = (n + 1

2 )Φ0.
Since Φ depends on the flux through the SQUID loop
and Φ0 is tiny, it is possible to measure very small
magnetic fields. We can calculate the theoretical pre-
cision of a representative device of area 1 cm2:

B =
0.5Φ0

A
= 1.035 ∗ 10−7 Gauss = 1.035 ∗ 10−11 T

4 Discussion

The extreme sensitivity of the SQUID is exploited in
many applications to find small changes in magnetic
fields. The measurement is performed by recording
the oscillations in output current when magnetic flux
varies. The measurement is equivalent to moving
along the horizontal axis of figure 3 while recording
oscillations in output current.

5 Conclusions

We show how a thin insulating junction between two
superconducting metals comes to exhibit AC and
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DC Josephson Effects using basic statements from
Ginzburg-Landau superconductivity. We then show
how these equations can be used to form a SQUID
device, in which two Josephson junctions are placed
in parallel in a small superconducting loop, to mea-
sure small changes in magnetic flux. These are fun-
damentally the same phenomena leveraged by newer
SQUIDs which use high-temperature superconduc-
tors and have an even greater degree of precision.

Appendix

Statement on using ChatGPT or
related online AI resources

Please circle the appropriate statement/statements
regarding your usage of online AI tools to create this
document.

• I did not use any AI-based tools to create this
document.

• While I used AI-based tools to assist in my re-
search, I did not use such tools to write this doc-
ument.

• I used AI-based tools to improve a draft of some
or all of the various sections of this document
after I had written a draft on my own.

• I pretty much used an AI tool to do everything
you have read in this document.
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