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The 2D Ising model is a powerful tool in statistical mechanics which allows us to represent the
behavior of ferromagnetic materials. In this project, we use Markov Chain Monte Carlo (MCMC)
techniques, specifically the Metropolis-Hastings algorithm, to simulate the 2D Ising model. We dis-
cuss our decisions for the various parameters for the MCMC simulation such as thinning and number
of burn-in steps. By varying several properties such as magnetic field strength and temperature, we
gain insights on the behavior of the system, including phase transitions. Our results demonstrate
phase transitions at the Curie temperature as well as the relationship between magnetization, tem-
perature, and magnetic field strength. We also discuss optimizations to our code. Through this
project, we increase our understanding of ferromagnetism and MCMC processes.

I. INTRODUCTION

The 2D Ising model is a physical model used to de-
scribe ferromagnetism in statistical mechanics. It con-
sists of a grid-like square lattice where each cell in the
lattice has a magnetic moment (spin) that can be either
up (+1) or down (−1). An example of one such Ising
model can be seen in Figure 1. The 2D Ising model al-
lows for the analysis of phase transitions at zero external
magnetic field within a simplistic framework, illustrating
how local interactions can lead to collective behavior [1].
By applying the external field to the model, we are also
able to study the relationship between magnetization of
the system, magnetic field, and temperature.

There are many ways to simulate the 2D Ising model,
but we use Markov Chain Monte Carlo (MCMC) tech-
niques to try to visualize the underlying physical prin-
ciples. A Markov Process gives us probabilistic rules
to transition through a system where the next state de-
pends solely on the current state. Repeatedly applying

FIG. 1. 2D Ising Model; blue indicates negative spin while
red represents positive.
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the Markov process moves the system through a ”random
sequence” of states, forming a Markov Chain.

The ”random sequences” should not be truly random,
since you want to simulate physically probable situations.
The Monte Carlo method addresses this issue through the
introduction of random sampling. This allows for the es-
timation of probabilities and behaviors of the Ising model
without needing to examine every single possibility.

The MCMC method uses both of these strategies by
using Monte Carlo processes, in our case the Metropolis-
Hastings algorithm, to generate long Markov chains. Us-
ing this, one can calculate moving averages of various
quantities, which converge to their true probabilistic val-
ues for long enough chains.

The Metropolis-Hastings algorithm [2] works by com-
paring a given state with another random state and de-
ciding to accept or reject the result based on certain con-
siderations. The Metropolis-Hastings algorithm also en-
sures that a simulation behaves correctly, maintaining a
”detailed balance”. This equilibrium requires that the
rate of transition from any state to its successor and vice
versa remains invariant. This balance helps us achieve a
stable, consistent distribution of states that reflects the
true nature of the 2D Ising model [3].

In the context of the 2D Ising model, MCMC simula-
tions help visualize and understand the equilibrium and
dynamical properties of the system. These techniques
allow for the estimation of physical quantities, such as
magnetization and susceptibility, by simulating the state
of the system over time and analyzing the resulting data
[4].

Our code can be accessed via the group’s GitHub [5].
As we will discuss later, it can be run the standard way
through python or the speed optimized way using C++.
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II. METHODS

A. Equations

Simulation of the 2D Ising model requires two main
formulae: the magnetization of the system and the en-
ergy of spin configuration.

M(σ) =
1

|Λ|
∑
i∈Λ

σi (1)

Equation 1 allows us to calculate the average magnetic
moment per lattice site in the 2D Ising model. Summing
up the spins across all lattice sites and dividing by the
total number of sites yields magnetization M . Λ refers
to the lattice and |Λ| refers to the number of lattice sites,
while σi refers to the spin at lattice site i.

E(σ) = −J
∑
⟨ij⟩

σiσj −B
∑
i∈Λ

σi (2)

Equation 2 quantifies the system’s total energy, com-
prising of two parts: interaction energy between adjacent
spins and energy due to an external magnetic field B. In
the first part, the sum of the product of neighboring spin
pairs multiplied by the spin-spin interaction J indicates
energy preference for aligned or opposite spins. The term
⟨ij⟩ represents two adjacent sites i and j. J is set to be
constant for vertical and horizontal spins signifying the
isotropic case for the 2D Ising model. In the second term,
the sum of spins over all sites multiplied by B reflects
the field’s influence on spin alignment. Negative signs in
both terms denote energy minimization when spins align
with each other and the external field for ferromagnetic
coupling (J > 0). Along with the formulae above, in or-
der to study and describe the behavior of the system at
different temperatures, it is useful to know the critical
temperature at which we expect the phase transitions.

TcKb/J = 2/ln(1 +
√
2) ≈ 2.269 (3)

Equation 3 approximates the critical temperature for
the 2D Ising model, also known as Curie point [6]. J
is the spin-spin interaction, Kb is Boltzmann’s constant,
and Tc is the critical temperature. This formula works for
the isotropic case in which horizontal and vertical J are
set to equal each other. The critical temperature marks
the transformation of the material from ferromagnetic to
paramagnetic. We can then set a range of temperature
values below and above the point to observe phase tran-
sitions, as well as the behavior of the system when the
material is ferromagnetic or paramagnetic.

B. Code

The code implements the Metropolis-Hastings algo-
rithm for an MCMC simulation of the 2D Ising model.

This algorithm proceeds as follows: first, choose a ran-
dom point within the lattice; second, compute the change
in energy associated with flipping the spin at that point;
third, decide weather or not to flip the spin at that point.
This process is repeated many times as the system con-
verges. We can then use the converged system (post
burn-in) to compute the mean magnetization.
The first step requires use of a random number gen-

erator to select a single lattice point. We then access
the neighboring points, and the external magnetic field
to compute the change in energy associated with flipping
the spin of this, random point. If the change in energy
is negative, we accept the change and update the lattice
to flip the point in question. If the change in energy
is positive, we decide using Metropolis-Hastings. This
means the change is accepted with a probability propor-
tional to the magnitude of the change in energy and to
the temperature. The temperature dependency makes
the system more random for high temperatures; a point
is more likely to flip compared to its neighbors, or against
the magnetic field at high temperature.
We made three implications of the core algorithm. The

first two were in python, one vectored and the other con-
ventional. The performance gain for vectorization was
minimal, and the memory usage was prohibitive at the
full 100x100 lattice size. To address this, we used py-
bind11 to re implement the conventional version in C++
with a Python wrapper. The performance gain was about
50x in C++ compared to Python, however pybind11
causes platform dependencies which mean it only runs
on a system with which it is compiled. This prevented
us from packaging it with our final implementation, but
the code is included in the repository. It is also wrapped
in the utils.py script.
A key optimization that was made across all implemen-

tations was the vectorization of the calculation of mean
energy in the lattice. We recognized that, for any given
simulation step, the lattice spins can change at only one
point. By calculating the initial total spin, we can up-
date a list of total spins for each step using one addition
operation (if a spin is changed). At the end of the sim-
ulation, we calculated the mean total energy by dividing
the list of total energies by the size of the lattice. That
prevents calling np.mean on each step, which would oth-
erwise perform 100x100 addition operations per step.
The pseudo-code in Algorithm 1 shows our implemen-

tation of MCMC with Metropolis-Hastings algorithm.
Lines 1-7 initialize the lattice. Lines 8-14 are the
loop for each MCMC step (Lines 11-13 encapsulate the
Metropolis-Hastings algorithm). Line 16 returns the sim-
ulation results.

C. Parameters

The algorithm also requires the definition of a few
parameters including the initial configuration, burn-in
steps, total steps, and thinning.
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Algorithm1 Simplified Pseudocode for 2D Ising Model
Simulation

1: Initialize simulation parameters: steps, temperature, lat-
tice size, etc.

2: if starting with random spin configuration then
3: Initialize lattice with random spins
4: else
5: Initialize lattice with all spins up
6: end if
7: Initialize an array to store magnetization values
8: for each step in the simulation do
9: Randomly select a lattice site

10: Compute the change in energy for flipping the spin at
this site

11: if the spin flip lowers the energy or meets the accep-
tance probability (∝ ∆E−1) then

12: Flip the spin at the selected site
13: end if
14: Update and record the magnetization
15: end for
16: Output the magnetization values and final spin configu-

ration

[1]

FIG. 2. Burn-In Steps

1. The Initial Configuration

The initial configuration of the system has two main
types: aligned spins, where all spins are in the same direc-
tion, or randomized spins with equal probability. Both
configurations have their advantages depending on the
purpose of the simulation. For studying the behavior of
the system at the phase transitions, the randomized ini-
tial configuration is more suitable. This type of initial
configuration represents a more disordered state of the
system, which is better for studying the behavior near
phase transition. It captures the influence of thermal
fluctuations on the system at higher temperatures, and
thus the critical point. Aligned spins initialization would
take longer to account for these fluctuations since it is
mainly used for studying ferromagnetic materials (at low
temperatures).

2. Burn-In Steps

In order to get the most probable results from our sim-
ulation, we discard the initial behavior of the system from

FIG. 3. Standard Deviation for Thinning

FIG. 4. Mean Magnetization for Thinning

before it nears equilibrium. These initial discarded steps
are called burn-in steps. There are various approaches to
determine the optimal number of steps to burn in. Our
solution was to analyze the relationship between stan-
dard deviation of magnetization and step number, shown
in Figure 2. We see that for later steps, the standard de-
viation follows the pattern we expect to see for error in an
MCMC simulation. However, we notice a critical point
near the start of the graph, where standard deviation is
greatly varied from the expected relation. We choose to
burn in steps prior to this critical point. Based on our
analysis, the burn-in value we used was 350,000 steps.
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FIG. 5. Effects of Temperature and External Magnetic Field

3. Thinning

Thinning in MCMC refers to the process of selecting
only every nth value in the chain in order to make the
data points independent from one another. To determine
the optimal amount of thinning to use, we plot results for
a single simulation of 10,000,000 steps, thinned by values
from 1 to 50. If we saw the mean and standard devia-
tion values trending as thinning increased, then we would
conclude that thinning improves the results. However, as
seen in 4 and 3, we observe that the values of both the
mean and standard deviation are just as likely to increase
or decrease. This results is consistent with simply hav-
ing fewer data points. Based on our analysis, we decided
that thinning is unnecessary for our purposes.

4. Total Steps

Since we know our MCMC will converge closer to the
expected value for larger numbers of steps, we want the
largest number of total steps which is computationally
viable to maximize accuracy. With our final optimized
code, we were able to easily compute 1,000,000 steps. In
practice, our results and analyses are the product of runs
between 2 and 10 million steps.

III. RESULTS

The 2D Ising model at different temperatures T and
magnetic field strengths generated using MCMC and the
Metropolis-Hastings algorithm can be seen in Figure 5.

FIG. 6. Magnetization vs Magnetic Field Strength for Differ-
ent Temperatures

For increased temperature, the Ising model is more dis-
ordered as a result of increased thermal fluctuations. For
increased magnetic field, we see more spin alignment in
the Ising model, which clearly lines up with the theoret-
ical result.

1D plots of magnetization versus magnetic field for dif-
ferent temperatures are shown in Figure 6. We plot mag-
netization as a function of changing magnetic field for
values of temperature that are below, at, or above criti-
cal temperature to observe the behavior of the system.

For low temperatures, below the Curie point, the mag-
netization of the system does not change as external field
strength is increased. At low temperature, the system
experiences quantum effects rather than classical. Thus,
the thermal fluctuations have less influence on the sys-
tem and the magnetic field does not have a large affect
on the magnetization.

For the critical temperature, the plot shows a first or-
der phase transition when there is no present external
field. A first order phase transition is an abrupt change
of the state of the system. It happens at the critical tem-
perature because this is where the system becomes highly
affected by the thermal fluctuations, thus the change in
the magnetic field causes a spontaneous change in the
magnetization direction.

Above the critical temperature, magnetization starts
behaving proportionally to the magnetic field strength.
It decreases to zero as magnetic field decreases, and then
increases as the magnetic field increases. The change in
the magnetic field makes the magnetization flip a sign.
At high temperatures, the system is dominated by the
thermal fluctuations, so we expect the magnetization to
be fully dependent on the changing magnetic field.

The 1D plots of magnetization versus temperature for
different magnetic fields can be seen in Figure 7. In these
plots, the strength of the external magnetic field is fixed
and magnetization is varied as a function of temperature
for negative, positive and the zero external field. For
a negative magnetic field, the system continuously loses
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FIG. 7. Magnetization vs Temperature for Different Magnetic
Fields

its magnetic properties as the temperature increases and
reaches the critical point. For the absence of the exter-
nal magnetic field, a more spontaneous phase transition
is apparent, where the system goes from ferromagnetic
to paramagnetic state. The system also becomes fully
demagnetized. For a positive magnetic field, the magne-
tization undergoes a first order phase transition and flips
its sign, then continuing to decrease as the temperature
reaches the critical value.

In both sets of plots, Figure 6 and Figure 7, hystere-
sis can be observed. Hysteresis is the phenomenon that
describes the system’s dependence on its past history,
rather than only its current conditions, such as tempera-
ture or applied external field. In the graphs, this behavior
of the system is indirectly represented through the coexis-
tence region between ordered and disordered phases. For
the phase transitions in Figure 7 (positive fixed magnetic
field), we can observe the state of the system for differ-
ent magnetization values with the same magnetic field
and temperature. This signifies that for a certain value
of temperature and magnetic field, the system can have
different magnetization values depending on its previous
history.

The phase plot of the magnetization verse temperature
can be seen in Figure 8. We accomplish this by making
a heat map of the average magnetization after the burn
in phase at each temperature and external field point.
Each cell was trained for 1 million steps to ensure that
it reached an equilibrium state. When temperature ap-
proaches absolute zero, the system reaches a ground state
where all spins align in the direction of the external field
(if present) or in one direction spontaneously. This can
clearly be seen by the bright red and blue at the top and
and bottom of the plot.

When there is no magnetic field, we see the same re-
sult we saw for homework 3. The system’s response to an
external magnetic field, quantified by the magnetic sus-
ceptibility, diverges after the temperature is above the
critical point. This means that the net magnetization is

FIG. 8. Phase Diagram in T vs. B of the 2D Ising Model

around 0.
However having a nonzero magnetic field breaks this

symmetry. Even at temperatures greater than the criti-
cal point, where the system would normally be in a dis-
ordered state, the external field can induce a net mag-
netization. This breaking of symmetry is what makes
2D Ising models so complicated and requires them to be
simulated rather than calculated.

IV. CONCLUSION

In this project, we successfully implemented a MCMC
simulation to study the 2D Ising model, significantly ad-
vancing our understanding of ferromagnetism in statis-
tical mechanics. Utilizing the Metropolis-Hastings algo-
rithm allowed us to visualize and analyze the equilib-
rium and dynamical properties of ferromagnetic mate-
rials under various conditions. One of the key achieve-
ments was the integration of C++ for computationally
intensive parts of our code, which substantially reduced
runtime and enhanced our simulation capabilities.
However, we learned that while implementing C++ ac-

celerates computation, it complicates the setup for other
users, and obstacle we did not expect to face. This shows
the importance of balancing high-performance comput-
ing with ease of use and comprehensive documentation.
Looking ahead, we are curious to explore how these

simulations translate to real-world phenomena and to
test their applicability in practical scenarios involving
ferromagnetic materials. Additionally, we plan to inves-
tigate alternative computational methods, such as varia-
tional autoencoders [7] to model 2D Ising systems. These
methods promise faster processing and the ability to han-
dle more complex situations, although they also present
challenges in terms of reliability and training.
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