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1 Abstract

This project explores the application of Reinforcement Learning (RL) techniques to optimize perfor-
mance in a racing game environment provided by Gymnasium, focusing specifically on the CarRacing
game. We employ Deep-Q Networks (DQN) and Proximal Policy Optimization (PPO) models, lever-
aging the Stable Baselines3 library Raffin et al.[[2021]] for implementation. Our experiments reveal
that a Convolutional Neural Network (CNN) architecture paired with PPO exhibits promising results,
achieving significant progress in race completion with high speed within a few hours of training.
To enhance training efficiency and model performance, we explore various augmentation strategies,
including reward structure modifications and model architectural adjustments. Our work includes
the implementation of reward augmentations such as grass detection, speed, and acceleration. This
project demonstrates the intricate balance between model architecture, training methodologies, and
augmentation strategies in achieving optimal RL performance in complex environments. Using the
PPO approach alongside grass detection and acceleration augmentation, we yielded our best model
achieving a mean reward of 916.80273.

2 Introduction

We apply Reinforcement Learning techniques to the CarRacing environment from Gymnasium. For
our benchmarks we focus on using Deep-Q Networks (DQN) and Proximal Policy Optimization
(PPO) to train a virtual car to race effectively.

Reinforcement Learning is a computational approach where an agent learns to make decisions by
interacting with an environment. It aims to maximize a cumulative reward through trial and error,
adapting its strategy based on feedback from its actions. RL is highly effective in teaching machines
how to perform complex tasks without explicit programming for each step.

Deep Q Learning (DQN) is an advanced RL technique that integrates deep neural networks to
approximate the optimal action-value function, known as Q. This method allows the agent to evaluate
the potential future rewards of its actions, enabling more informed decision-making. DQN has proven
effective in environments where the state and action spaces are large, making it a robust choice for
complex tasks like driving simulations.

Proximal Policy Optimization (PPO) is another RL strategy, known by its approach to updating
policies. It optimizes the policy directly, aiming to improve performance while ensuring that the new
policy does not deviate too drastically from the old one. This balance helps in maintaining stable and
consistent learning progress, particularly beneficial in environments where action consequences are
significant and varied.
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3 Related Work

Deep Q-Learning (DQN) stands as a cornerstone in reinforcement learning, integrating deep neural
networks to approximate the optimal action-value function. This integration enables agents to evaluate
the potential future rewards of their actions, thereby facilitating informed decision-making in complex
environments. DQN was first pioneered by Mnih et al.|[2013]], used for multiple Atari games.

Proximal Policy Optimization (PPO) [Schulman et al.l 2017]] is a newer type of policy optimization
methods that have gained prominence for their effective balance between performance enhancement
and policy stability. PPO’s methodology, which directly optimizes the policy while ensuring minimal
deviation from previous policies, has proven beneficial in various challenging RL scenarios.

One augmentation we considered, but ultimately were not able to implement, was a constrained RL
algorithm aiming to minimize a cost function associated with driving off the track. The algorithm that
we decided on was PPO-Lagrangian [[Achiam and Amodei, |2019]], a mode of constrained learning
that adds a cost term multiplied by a Lagrangian multiplier to the advantage during rollouts. We also
considered POAR (Policy Optimization via Online Abstract Representation Learning). POAR [Chen
et al., [2021]] for potential improvements in ease of hyperparamater tuning, but ultimately found it
unsuitable due to the lack of a continuous cost variable.

4 Methods

Our GitHub repository can be seen and ran here |Learning] [2024]].

4.1 Training

For each policy, we trained the models until they seemed to converge. Because the number of epochs
required to converge are not comparable between models, we subjectively determined whether or
not the models converged based on the current time spent training and seeing if the model has not
improved significantly over a portion of the training time.

The baseline reward follows the structure such that there is +1000/N for every new track tile that is
visited with N being the amount of tiles explored, and -0.1 every frame. Additionally, an episode
ends when the track is completed or if it exits the environment, getting -100 and the game ends.

4.2 Deep Q-Learning

We used the Stable-Baselines3 implementation of Deep-Q learning with a discrete action space.
Stable-Baselines3 takes images as inputs from the gym environment to determine state, therefore,
it is necessary to have both a feature extraction network component and a reinforcement learning
network component.

The feature extraction component, shared across all Stable-Baselines3 RL policies, is the convo-
lutional network present in [Mnih et al. [2013]], consisting of two convolutional layers and two
full-connected layers. The Deep-Q policy also implements a replay buffer and target network for
state value estimation.

The training parameters we used for DQN are:

1. Learning rate: 0.0001
2. Batch size: 32
3. Optimizer: Adam

4.3 Proximal Policy Optimization

We use the Stable-Baselines3 implementation of the PPO function, using the default Stable-
Baselines3CNN outlined prior for feature extraction. PPO iteratively improves the policy by using
multiple epochs of stochastic gradient ascent to optimize a surrogate objective.

The training parameters we used for PPO are:



1. Learning rate: 0.003
2. Batch size: 64
3. Optimizer: Adam

Ratffin et al.| [2021]).

In fifty epochs of five thousand training steps each, the model becomes capable of completing tracks,
but does so slowly, and experiences difficulty with recovery if it goes off track and loses orientation.

4.3.1 Reward Augmentation

The current reward function adds a reward for each road tile the car moves over and punishes a small
amount for every time step. To change the reward function, we implemented two augmentations.

4.3.2 Grass Punishment

The first is to heavily punish the car for going into the grass instead of just rewarding getting new
road tiles. We implemented this because in most types of racing, a driver is punished if they go off the
track. For this, we subtract from the reward a small value times the number of tires in the grass. We
detect if the tire is in the grass by looking if the pixels around the tires are green as shown in Figure|T]

4.3.3 Speed Reward

While the grass reward is effective at incentivizing the agent to stay on the track, it does little empha-
size the importance for the car to maximize its speed. To address this limitation, we implemented
two additional reward augmentations focused on encouraging higher velocities: a speed reward
and an acceleration reward. The acceleration reward grants extra positive rewards when the agent
applies gas, directly promoting acceleration. Complementing this, the speed reward provides a reward
proportional to the car’s current speed, pushing the agent to attain and maintain higher speeds. One of
the key challenges we faced was tuning the constant scaling factors for these two rewards. Improper
scaling could lead to the agent prioritizing reckless acceleration over safe racing lines, diminishing
overall performance. We experimented with various constants before converging on values that struck
an effective balance, augmenting speed and acceleration without destabilizing the baseline rewards
responsible for keeping the car on the track. With these reward augmentations, the agent can learn to
navigate the course with heightened speeds while respecting the track boundaries.

4.3.4 Two-Stage Training Approach for Speed Optimization

For the acceleration reward augmentation, we trained it in conjunction with the grass edge detection
reward component. This allowed the agent to simultaneously learn to accelerate while still prioritizing
staying on the track and avoiding collisions with the grass edges.

However, for the speed reward augmentation, we adopted a different approach by splitting the learning
phase into two distinct stages. In the first stage, the agent focused solely on learning to stay on
the road and complete the track, with the only reward component being the grass edge detection.
Once the agent achieved a satisfactory reward level over a certain number of epochs, indicating its
proficiency in navigating the track, we transitioned to the second phase.

During this second phase, the emphasis on strictly adhering to the track boundaries was reduced, and
the speed reward augmentation was introduced. By decreasing the weight of the grass edge detection
reward and incorporating the speed reward, the agent was encouraged to prioritize achieving higher
velocities while still maintaining a reasonable level of track adherence.

5 Results

The way in which we quantify our models is the mean reward and time to complete a given seeded
track, that it has not been trained on. The mean reward is a viable metric, as it has a maximum value
of 1000 across all implementations. It is also a clear measurement of the success of the car given
the reward structure. The time taken to complete a track is a more realistic metric, as it quantifies
the true purpose of the game: to race with the goal of completing quickly. See Table 2] for reward
comparisons and Table 1| for time comparisons.
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Figure 1: The grass detection pixels highlighted in blue.
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Figure 2: DQN baseline reward performance

5.1 Deep Q-Learning Baseline

See Figure 2] Table[2] and Table[I]for results. This method took too long to converge and also has
sub-optimal performance.

5.2 Proximal Policy Optimization Baseline

See Figure [3] Table[2] and Table|T]for results. This method converges relatively quickly, but does not
outperform its augmentations.

5.2.1 Reward Augmentation: Grass Punishment

See Figure [d] Table 2] and Table [I]for results. This augmented method performs well, but can be
further improved.



Reward Progression, PPO, Baseline
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Figure 3: CNN PPO baseline reward performance
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Figure 4: Grass Detection reward performance

5.2.2 Reward Augmentation: Grass Detection + Speed Reward

See Table 2] and Table I]for results. This augmented method performs very well, as it leads multiple
trials for time, but the mean reward is not optimal.

5.2.3 Reward Augmentation: Grass Detection + Acceleration Reward

See Table 2] and Table|[T|for results. This augmented method performs very well, the main leader in
time trials and leader in mean reward.

Model Seed 41 | Seed 50 | Seed 51 | Seed 52 | Seed 53 | Seed 54 | Seed 55 | Mean Time
PPO Baseline 2601 | 2293 | 2202 | 2327 | 1929 | 19.80 | 18.99 21.76
PPO + Grass Detection 1923 | 19.04 | 2048 | 2060 | 19.04 | 1755 | 19.06 19.29
PPO + Grass Detection + Acceleration 17.31 15.45 16.13 19.55 19.52 15.29 16.27 17.07
PPO + Grass Detection + Speed 1555 | 1408 | 2049 | 1992 | 18.05 | 19.89 | 20.61 18.37
Table 1: Comparison of time taken by different RL models for various seeds. The best times for each

seed are highlighted in bold.

6 Discussion

6.1 DQN

The Deep Q network was eventually able to complete the track, however, its training time and memory
usage greatly exceeded that of PPO’s: whereas for PPO and all augmented PPO policies we trained
for 50 epochs of 5000 steps and found such a regimen sufficient for producing models that could
successfully complete the circuit, for DQN, we needed to train for 75 epochs of 16000 steps - a



Method Mean Reward
DQN 896.46
PPO 744.52
PPO + Grass Detection 906.10
PPO + Grass Detection + Acceleration 916.80
PPO + Grass Detection + Speed 801.97

Table 2: Comparison of Methods and Rewards

fivefold increase in training time. At the point at which PPO model could complete the track, the
DQN model could not complete more than two turns. For these reasons, we did not proceed with
DQN augmentations.

6.2 PPO
6.2.1 Baseline

Compared to DQN, PPO’s training process is more stable and faster. The result of the baseline doesn’t
seem to be significantly different than DQN baseline. It faces similar issue with DQN baseline that
the car can still find it hard to handle sharp turn and the speed is relatively slow.

6.2.2 Grass Augmentation

We implement grass detection by checking if the corners of the car are on the grass, the more corners
on the grass, the harder the punishment. By implementing this feature, the car tries to stay in the
middle of the road and it reaches a higher rewards during training. However, the method seems to go
slowly to ensure this is the case. This persuaded us to implement additional reward augmentation
functions that ensure that the speed is also prioritized by the model during training.

6.2.3 Grass and Speed Augmentations

The performance of the different reward augmentation strategies was evaluated across multiple
random seeds, as shown in Table[I] The results indicate that incorporating reward augmentations
significantly improves the agent’s performance compared to the baseline PPO model without any
augmentations.

Among the augmented models, the combination of grass detection and speed reward (PPO + Grass
Detection + Speed) demonstrated the best overall performance, achieving the fastest mean time of
18.37 seconds across all seeds. However, the grass detection and acceleration reward (PPO + Grass
Detection + Acceleration) model closely followed with a mean time of 17.07 seconds, outperforming
the speed reward model on several individual seeds.

Interestingly, upon closer inspection of the simulations, we noticed that the grass detection and speed
reward model often reached high velocities, leading to occasional oversteering and drifting (donut)
behavior, particularly during sharp turns. This characteristic made the model excel on simpler tracks
but struggle on more challenging configurations with tighter turns.

In contrast, the grass detection and acceleration reward model displayed a more controlled and
consistent driving behavior, making it better suited for handling complex track layouts. While it may
not have achieved the highest top speeds, its ability to navigate intricate sections more effectively
resulted in superior performance on the more demanding tracks.

Even the grass detection reward augmentation alone (PPO + Grass Detection) showed a significant
improvement over the baseline model, highlighting the importance of incentivizing the agent to stay
within the track boundaries.

It is extremely difficult to find optimal reward augmentations for a model. While the grass detection
and speed reward model excelled in terms of overall time, the grass detection and acceleration reward
model demonstrated greater versatility and robustness across a wider range of track configurations.



6.3 Constrained RL

One characteristic that we identified for all models was difficulty in recovery once control and
orientation are lost; this was observed even when negative rewards was assigned to any instance of
off-track driving. We therefore wanted to explore constrained RL algorithms, which would be able to
strictly enforce track limits without incurring possible reward-hacking behaviors, such as the car not
moving at all with too large a negative reward assigned to going off track.

We ultimately decided on PPO-Lagrangian for ease of implementation with a discrete cost function
that would penalize off-track driving at a constant rate per frame, however, the task of adding the
additional dimension of cost to the Stable-Baselines3 environment proved too challenging to complete
in the project timeframe. Any future work on constrained RL would likely first involve confirming
the hypothesized reward-hacking behavior.
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