

Improving Signal Classification for HNL with τ using Transfer ML

September 4, 2023

Standard Mode

- Successful at predicting interaction between particles
- Struggles to explain dark matter to the mass of neutrinos

Standard Model of Elementary Particles

VMSM

- Neutrino minimal standard model
- Heavy Neutral Leptons
 - Introduces three right-handed, colorless neutrinos
 - Don't interact electromagnetically or via strong force

Our task

- Study prompt decays of HNL
 - Kinematic signatures
- Distinguish HNLs and background SM processes with similar signatures in the detector.
- Use processed 2018 CMS data

Focus on \(\tau \) Leptons and HNLs

- * Focus
 - * HNLs to 3 lepton decay
 - * Targeting |VTN|
- * Importance of Hadronic τ 's
 - * 65% decay into hadrons
- * CMS sensors
 - * Tracker for charged particles
 - * ECAL for $e \& \gamma$
 - * Hadronic calorimeter for hadrons

Event Preselection & Channels

- * Event reconstruction
 - * 3 well reconstructed isolated leptons
 - * $\Delta R \leq 0.5$
- * Channels and triggers
 - * 5 channels: $ll'l'' \in \{\tau\tau\mu, \tau\tau e, \tau\mu\mu, \tau\mu e, \tau ee\}$
- * Data preprocessing
 - * Deep Tau discriminator score
- * Lepton requirements
 - * $p_T^{e,\mu} > 10 \, {\rm GeV}$
 - * $p_T^{\tau} > 20 \text{ GeV}$

GeV

Distribution p_T for $\tau\tau\mu$ channel From Luca Hartman report

Dataset

- * HNL Mass Hypothesis
 - * $m_{\text{HNI}}^{\text{hyp}} \in [85,1000] \,\text{GeV}$
- * Data Generation
 - * MadGraph, Pythia, Geant4
- * Data Size and Cuts
 - * 216k signal events, 1.4M background
- * Potential Challenges
 - * Risk of overfitting
- * Variable and Feature
 - * m, p_T, ϕ, η
 - * Weight, channel, mhyp HNL

Channel Distribution of data

Previous Work

Lucas Mollier

- * Machine Learning algorithm
 - * XGBoost
- * Training Approach
 - * Classifiers for each mass and channel
- * Inputs:
 - * 40 classical observables

ROC curves and AUC values for HNL mass 250 GeV

Classical observables: calculated + raw kinematic variables ($m, \Delta R, M_T^{tot}$, etc...)

Previous Work

Nelson Glardon

- * Machine Learning algorithm
 - * Deep Neural Network
- *Input:
 - * 85 input features
- * Training Approach
 - * One classifier for all channels and m_{hyp}

Significance Estimator for DNN score

Visualization of the DNN model

Previous Work

Nelson Glardon

- * Machine Learning algorithm
 - * Deep Neural Network
- *Input:
 - * 85 input features
- * Training Approach
 - * One classifier for all channels and m_{hyp}

* Best Model Specifications:

* Input: 29 features

* Depth: 3

* Width: 58

* Optimizer: Adam

* Dropout: 0.2

Significance Estimator for DNN score

Histograms

- *Objective
 - * Have a clear metric to compare various models and features at different mass hypotheses
- * Histograms
 - * Model scores (or features) vs Event count at a specific m_{hvp}
- * Statistical Certainty
 - * Relative weighted uncertainty for each bin

$$*\sqrt{\frac{\Sigma w^2}{\Sigma w}} < 0.15$$
Dmitri Demler

Constant-signal histogram of $\tau\mu\mu$ channel and m_{hyp} 300 GeV

Histogram Binning

* Objective

- * Have a clear metric to compare various models and features
- * Histograms
 - * Model scores (or features) vs Event count
- * Statistical Certainty
 - * Relative weighted uncertainty for each bin

$$* \sqrt{\frac{\Sigma w^2}{\Sigma w}} < 0.15$$

Constant-signal histogram of $\tau e\mu$ channel of M_t^{tot} for different m_{hyp}

* Constant-signal histogram

- * Left to right
- * Signal heigh stays the same
- * Easy to compare at wide range of x values

Histogram Binning

- *increasing-signal histogram
 - * Right to left
 - * Signal height increases
 - Better comparison at high x-values

Increasing-signal histogram of $\tau e\mu$ channel of M_t^{tot} for different m_{hvp}

Constant-signal histogram of $\tau e\mu$ channel of M_t^{tot} for different m_{hyp}

- * Constant-signal histogram
 - * Left to right
 - * Signal heigh stays the same
 - * Easy to compare at wide range of x values

Significance plotting

*Standard Formula for Significance

Sig =
$$\frac{S}{\sqrt{B}}$$
 with custom bins

- * Sig. has arbitrary units
- * Significance plot structure
 - * X-axis: Mass Hypothesis
 - * Y-axis: Average of significance scores

Increasing-Signal binning

Constant Signal binning

DNN Training

*Initial goal

* Beat m_T^{tot} across all mass hypotheses

* Methodology

- * Normalize inputs
- * Try different depth and width combinations

* Findings

* Best model: 85 features, 2 layers [83, 30]

Comparing different models

Introduction

- * Data Size Issue
- *New Approach
 - * Transfer Learning
- * Regression DNN: predict calculated kinematic features
- * Classification DNN: use regression model as input
- * Advantages
 - * Infinite synthetic event generation

Give a man a fish, and you feed him for a day. Teach a man to fish, and you feed him for a lifetime.

Vinematic feature

Data Generation

- * Additional output features
 - st Mother particle kinematic values & E_{tot}
- * Data cuts
 - * Cut 0.03rd and 99.7th percentiles of real data
 - * $\approx 27 \%$ data removed
- *Logical Limits
 - * $\eta \in [-2.5, 2.5]$
 - * $\phi \in [-\pi, \pi]$
 - * p_T : exponential CDF

Fitted Exponential CDF

Regression Training

* Network

- * 1024 nodes
- * 25 layers
- * ~25M parameters

* Normalization

 * GeV vars divided by E_{tot}

* Training

- * New data every epoch
- * Loss function: MSE & Relative MSE
- * Optimizer: Adam + Decaying Learning Rate

Best model validation loss

Drop-in technique

* Challenge

- * Losing input feature values
- * Solution
 - * "Drop-In": Reintroduce inputs every 3 layers

Without Drop-Ins

With Drop-Ins

Drop-in technique

Best model:

Without Drop-Ins

Regression Results

- *Safety check
 - * Make sure E_tot is being predicted well
- *Challenges

Residual distribution ΔR_3 in frame 1,2

Standard deviation bar plot of Absolute residual

Mean relative residual bar plot

Classification!

- *Start point
 - Best multivariate regression model (pretrained)
- * Data Prep
 - * Remove last output of pretrained DNN
- * Additional Inputs
 - * Channel, Mass Hypothesis, particle charges
- * Classification DNN
 - * Depth 3

Visualization of Transfer Learning model

Transfer Learning Strategies & Overfitting

- *Options for transfer learning
 - * Fixed weights
 - * Unfrozen weights
 - * Partially unfrozen weights
- *Overfitting Risks
 - * Escalates when weights are unfrozen
- * Mitigation techniques
 - * Adamw with L2 regularization
 - * Dropout layers
 - * Pruning

Model

- * Pretrained model
 - * 1024 width best model
 - * Added dropout layers (50% chance)
- *Whole model:
 - * Unfrozen weights at epoch 5
 - * Binary Cross Entropy loss
 - * One-hot encoded channel input
 - * Hidden layers: [128,128]

Significance estimator for Transfer learning model

Analysis

* Analysis

- * Model performs better than simple DNN at higher mass hypotheses
- * Similar to simple DNN at smaller values
- * Possible Improvements
 - * Try out other overfitting techniques
 - * Stronger Regularization
 - * Smaller regression network

Significance estimator for Transfer learning model

Conclusion