Improving Signal Classification for HNL with τ using Transfer ML September 4, 2023 ### Standard Mode - Successful at predicting interaction between particles - Struggles to explain dark matter to the mass of neutrinos #### Standard Model of Elementary Particles ### VMSM - Neutrino minimal standard model - Heavy Neutral Leptons - Introduces three right-handed, colorless neutrinos - Don't interact electromagnetically or via strong force ### **Our task** - Study prompt decays of HNL - Kinematic signatures - Distinguish HNLs and background SM processes with similar signatures in the detector. - Use processed 2018 CMS data ### Focus on \(\tau \) Leptons and HNLs - * Focus - * HNLs to 3 lepton decay - * Targeting |VTN| - * Importance of Hadronic τ 's - * 65% decay into hadrons - * CMS sensors - * Tracker for charged particles - * ECAL for $e \& \gamma$ - * Hadronic calorimeter for hadrons #### **Event Preselection & Channels** - * Event reconstruction - * 3 well reconstructed isolated leptons - * $\Delta R \leq 0.5$ - * Channels and triggers - * 5 channels: $ll'l'' \in \{\tau\tau\mu, \tau\tau e, \tau\mu\mu, \tau\mu e, \tau ee\}$ - * Data preprocessing - * Deep Tau discriminator score - * Lepton requirements - * $p_T^{e,\mu} > 10 \, {\rm GeV}$ - * $p_T^{\tau} > 20 \text{ GeV}$ GeV Distribution p_T for $\tau\tau\mu$ channel From Luca Hartman report ### Dataset - * HNL Mass Hypothesis - * $m_{\text{HNI}}^{\text{hyp}} \in [85,1000] \,\text{GeV}$ - * Data Generation - * MadGraph, Pythia, Geant4 - * Data Size and Cuts - * 216k signal events, 1.4M background - * Potential Challenges - * Risk of overfitting - * Variable and Feature - * m, p_T, ϕ, η - * Weight, channel, mhyp HNL #### Channel Distribution of data ### Previous Work #### Lucas Mollier - * Machine Learning algorithm - * XGBoost - * Training Approach - * Classifiers for each mass and channel - * Inputs: - * 40 classical observables ROC curves and AUC values for HNL mass 250 GeV Classical observables: calculated + raw kinematic variables ($m, \Delta R, M_T^{tot}$, etc...) ### Previous Work #### **Nelson Glardon** - * Machine Learning algorithm - * Deep Neural Network - *Input: - * 85 input features - * Training Approach - * One classifier for all channels and m_{hyp} Significance Estimator for DNN score Visualization of the DNN model ### Previous Work #### **Nelson Glardon** - * Machine Learning algorithm - * Deep Neural Network - *Input: - * 85 input features - * Training Approach - * One classifier for all channels and m_{hyp} #### * Best Model Specifications: * Input: 29 features * Depth: 3 * Width: 58 * Optimizer: Adam * Dropout: 0.2 Significance Estimator for DNN score ### Histograms - *Objective - * Have a clear metric to compare various models and features at different mass hypotheses - * Histograms - * Model scores (or features) vs Event count at a specific m_{hvp} - * Statistical Certainty - * Relative weighted uncertainty for each bin $$*\sqrt{\frac{\Sigma w^2}{\Sigma w}} < 0.15$$ Dmitri Demler Constant-signal histogram of $\tau\mu\mu$ channel and m_{hyp} 300 GeV ### Histogram Binning #### * Objective - * Have a clear metric to compare various models and features - * Histograms - * Model scores (or features) vs Event count - * Statistical Certainty - * Relative weighted uncertainty for each bin $$* \sqrt{\frac{\Sigma w^2}{\Sigma w}} < 0.15$$ Constant-signal histogram of $\tau e\mu$ channel of M_t^{tot} for different m_{hyp} #### * Constant-signal histogram - * Left to right - * Signal heigh stays the same - * Easy to compare at wide range of x values ### Histogram Binning - *increasing-signal histogram - * Right to left - * Signal height increases - Better comparison at high x-values Increasing-signal histogram of $\tau e\mu$ channel of M_t^{tot} for different m_{hvp} # Constant-signal histogram of $\tau e\mu$ channel of M_t^{tot} for different m_{hyp} - * Constant-signal histogram - * Left to right - * Signal heigh stays the same - * Easy to compare at wide range of x values ### Significance plotting *Standard Formula for Significance Sig = $$\frac{S}{\sqrt{B}}$$ with custom bins - * Sig. has arbitrary units - * Significance plot structure - * X-axis: Mass Hypothesis - * Y-axis: Average of significance scores Increasing-Signal binning Constant Signal binning # DNN Training #### *Initial goal * Beat m_T^{tot} across all mass hypotheses #### * Methodology - * Normalize inputs - * Try different depth and width combinations #### * Findings * Best model: 85 features, 2 layers [83, 30] Comparing different models #### Introduction - * Data Size Issue - *New Approach - * Transfer Learning - * Regression DNN: predict calculated kinematic features - * Classification DNN: use regression model as input - * Advantages - * Infinite synthetic event generation Give a man a fish, and you feed him for a day. Teach a man to fish, and you feed him for a lifetime. Vinematic feature #### **Data Generation** - * Additional output features - st Mother particle kinematic values & E_{tot} - * Data cuts - * Cut 0.03rd and 99.7th percentiles of real data - * $\approx 27 \%$ data removed - *Logical Limits - * $\eta \in [-2.5, 2.5]$ - * $\phi \in [-\pi, \pi]$ - * p_T : exponential CDF Fitted Exponential CDF ### **Regression Training** #### * Network - * 1024 nodes - * 25 layers - * ~25M parameters #### * Normalization * GeV vars divided by E_{tot} #### * Training - * New data every epoch - * Loss function: MSE & Relative MSE - * Optimizer: Adam + Decaying Learning Rate Best model validation loss ### Drop-in technique #### * Challenge - * Losing input feature values - * Solution - * "Drop-In": Reintroduce inputs every 3 layers Without Drop-Ins With Drop-Ins ### Drop-in technique Best model: Without Drop-Ins ### **Regression Results** - *Safety check - * Make sure E_tot is being predicted well - *Challenges Residual distribution ΔR_3 in frame 1,2 Standard deviation bar plot of Absolute residual Mean relative residual bar plot #### Classification! - *Start point - Best multivariate regression model (pretrained) - * Data Prep - * Remove last output of pretrained DNN - * Additional Inputs - * Channel, Mass Hypothesis, particle charges - * Classification DNN - * Depth 3 Visualization of Transfer Learning model #### **Transfer Learning Strategies & Overfitting** - *Options for transfer learning - * Fixed weights - * Unfrozen weights - * Partially unfrozen weights - *Overfitting Risks - * Escalates when weights are unfrozen - * Mitigation techniques - * Adamw with L2 regularization - * Dropout layers - * Pruning #### Model - * Pretrained model - * 1024 width best model - * Added dropout layers (50% chance) - *Whole model: - * Unfrozen weights at epoch 5 - * Binary Cross Entropy loss - * One-hot encoded channel input - * Hidden layers: [128,128] Significance estimator for Transfer learning model ### Analysis #### * Analysis - * Model performs better than simple DNN at higher mass hypotheses - * Similar to simple DNN at smaller values - * Possible Improvements - * Try out other overfitting techniques - * Stronger Regularization - * Smaller regression network Significance estimator for Transfer learning model # Conclusion